Difference between revisions of "MOOC:Verb03"

From Livre IPv6

(Script 03 : Evolution d'Internet)
(Activité 03 : Evolution d'Internet)
 
(15 intermediate revisions by 2 users not shown)
Line 1: Line 1:
=Script 03 : Evolution d'Internet =
+
__NOTOC__
 +
=Activité 03 : Évolution d'Internet =
  
 
1) Bonjour à tous ! Bienvenue dans cette vidéo sur l'évolution de l'Internet.
 
1) Bonjour à tous ! Bienvenue dans cette vidéo sur l'évolution de l'Internet.
Line 7: Line 8:
 
Nous expliquerons la politique d'allocation des adresses IPv4. Et nous verrons comment l'explosion de la demande et la taille limitée de l'adresse ont conduit à épuiser les adresses disponibles.  
 
Nous expliquerons la politique d'allocation des adresses IPv4. Et nous verrons comment l'explosion de la demande et la taille limitée de l'adresse ont conduit à épuiser les adresses disponibles.  
  
Finalement, nous présenterons les solutions développées pour pallier la pénurie.
+
Finalement, nous présenterons les solutions développées pour pallier le manque d'adresses.
  
 
== Evolution en  4 phases ==
 
== Evolution en  4 phases ==
  
3) Ce graphique de l'Internet Society présente des années 70 à 2000, une croissance en 3 phases, pour arriver à environ 100 millions d'hôtes connectés. 20 ans plus tard, la croissance a continué de manière exponentielle pour arriver à 4,5 milliards d'utilisateurs soit 59% de la population mondiale. C'est pourquoi il nous a paru nécessaire d'ajouter une quatrième phase couvrant ces 20 dernières années : ''l'explosion''.
+
3) Ce graphique de l'Internet Society présente des années 70 à 2000, une croissance en 3 phases, pour arriver à environ 100 millions d'hôtes connectés. 20 ans plus tard, la croissance a continué de manière exponentielle pour arriver à 4,5 milliards d'utilisateurs. C'est pourquoi il nous a paru nécessaire d'ajouter une quatrième phase couvrant ces 20 dernières années : ''l'explosion''.
  
 
=== Phase 1 : l'expérimentation ===
 
=== Phase 1 : l'expérimentation ===
Line 24: Line 25:
 
Contrairement au routage centralisé, tous les noeuds du réseau participent au routage en s'envoyant des informations de connectivité afin que chacun construise sa table de routage.  
 
Contrairement au routage centralisé, tous les noeuds du réseau participent au routage en s'envoyant des informations de connectivité afin que chacun construise sa table de routage.  
  
<!-- Les autres principes fondateurs sont la commutation de paquets en mode sans connexion et l'interconnexion des technologies de communication existantes, sans les modifier.-->
 
  
Les premiers protocoles vont être testés avec quelques noeuds et vont évoluer.  <!-- Ainsi NCP (Network Control Protocol) qui assure à la fois le transfert des paquets et la fiabilité de ce transfert va se scinder en deux protocoles : IP, protocole simple pour l'interconnexion et TCP, protocole complexe permettant de fiabiliser le transfert des paquets.  TCP ne sera exécuté que par les hôtes pour conserver au réseau sa simplicité. -->
+
IPv4 est spécifié en 1981 dans le RFC 791. Il définit d'une part, l'adresse sur 32 bits et son format en 2 champs de longueur variable, et d'autre part, le paquet, l'unité de données de transfert.   
 
+
 
+
IPv4 est spécifié en 1981 dans le RFC 791 qui définit d'une part, l'adresse sur 32 bits et son format en 2 champs de longueur variable et d'autre part, le paquet, l'unité de données de transfert.   
+
  
 
5) En 1983, le réseau Arpanet a été séparé du réseau militaire pour rester utilisé par des écoles et des universités américaines.   
 
5) En 1983, le réseau Arpanet a été séparé du réseau militaire pour rester utilisé par des écoles et des universités américaines.   
  
L'intégration par l'Université de Berkeley des protocoles TCP/IP dans le noyau du système d'exploitation Unix est un événement très important qui va accélérer la diffusion des protocoles de l'Internet et son adhésion par le plus grand nombre.
+
L'intégration par l'Université de Berkeley des protocoles TCP/IP dans le noyau du système d'exploitation Unix est un événement très important. Cela va accélérer la diffusion des protocoles de l'Internet et son adhésion par le plus grand nombre.
  
 
=== Phase 2: les tests en vraie grandeur  ===
 
=== Phase 2: les tests en vraie grandeur  ===
6) Les années 80 voient la généralisation des stations de travail sous Unix autonomes avec des capacités.  
+
6) Les années 80 voient la généralisation des stations de travail sous Unix, autonomes, mais avec des capacités limitées.  
<!--mais leur puissance de calcul et leur capacité disque restent limités. >
+
<!--Elles utilisent le système UNIX, un système évolutif et multi-tâches qui est le premier système  non propriétaire programmé en langage C.-->
+
  
 
Elles ont besoin de communiquer entre elles pour l'accès à des ressources partagées comme le système de fichiers ou les imprimantes.  La pile TCP/IP va être massivement utilisée pour ces communications locales.  
 
Elles ont besoin de communiquer entre elles pour l'accès à des ressources partagées comme le système de fichiers ou les imprimantes.  La pile TCP/IP va être massivement utilisée pour ces communications locales.  
  
Cerise sur le gâteau, les protocoles Internet proposent des applications de communication inter-personnelle comme le mail, le transfert de fichiers, ou les news. Très vite, les chercheurs et les ingénieurs vont les adopter pour échanger des informations scientifiques entre collègues du monde entier. Ces utilisateurs experts <!-- qui ne sont pas rebutés par des lignes de commandes et parlent couramment anglais--> vont réaliser des tests en vraie grandeur de l'Internet.
+
Cerise sur le gâteau, les protocoles Internet proposent des applications de communication inter-personnelle comme le mail, le transfert de fichiers, ou les news. Très vite, les chercheurs et les ingénieurs vont les adopter pour échanger des informations scientifiques entre collègues du monde entier.  
 +
 
 +
Ces utilisateurs experts vont réaliser des tests en vraie grandeur de l'Internet.
  
 
=== Phase 3 : l'universalité ===
 
=== Phase 3 : l'universalité ===
7) En parallèle, la micro-informatique se développe. Les particuliers commencent à s'équiper d'ordinateurs personnels aux performances certes limitées mais très économiques.  
+
7) En parallèle, la micro-informatique se développe. Les particuliers commencent à s'équiper d'ordinateurs personnels pas très performants mais très économiques.  
<!-- Mais ces utilisateurs vont se heurter aux très faibles débits de l'accès résidentiel qui passe par le réseau téléphonique.
+
 
On vient de voir que les particuliers commençaient à s'équiper en micro-ordinateurs personnels. -->
+
Et grâce à la technologie ADSL, dès la fin des années 90, le débit d'accès résidentiel va être dopé en utilisant toute la capacité des paires téléphoniques.  
Et grâce à la technologie ADSL, à la fin des années 90, le débit d'accès résidentiel va être dopé en utilisant toute la capacité des paires téléphoniques.  
+
  
Mais ces avancées ne suffisent pas à elles seuls à expliquer l'adhésion universelle à Internet.
+
Mais ces avancées ne suffisent pas à elles seules à expliquer l'adhésion universelle à Internet.
  
Les années 90 c'est aussi le boom des interfaces graphiques qui va simplifier l'accès des utilisateurs aux informations. Plus besoin de connaître les commandes Unix. Les informations contiennent toujours des textes mais sont aussi enrichies par des images, des sons et des vidéos.  
+
Les années 90 c'est aussi le boom des interfaces graphiques qui va simplifier l'accès des utilisateurs aux informations. Plus besoin de connaître les commandes Unix. Les contenus contiennent toujours des textes qui sont enrichis par des images, des sons et des vidéos.  
  
 
Dés cette époque, dans l'Internet se pose le problème de la recherche d'informations et les premiers moteurs de recherche font leur apparition.  
 
Dés cette époque, dans l'Internet se pose le problème de la recherche d'informations et les premiers moteurs de recherche font leur apparition.  
  
Mais le progrès le plus significatif a été le développement de l'application Web. Le serveur Web propose des contenus à ses clients, les navigateurs qui formattent ces contenus. Les pages sont chaînées entre elles grâce aux liens hypertexte ce qui facilite énormément l'accès à l'information.
+
Mais le progrès le plus significatif a été le développement de l'application Web.  
 +
Le serveur Web propose des contenus à ses clients sous forme de sites et de pages Web. Côté client, les navigateurs formattent ces contenus. Les pages sont chaînées entre elles grâce aux liens hypertexte. Ce qui facilite énormément l'accès à l'information.
  
Au fur et à mesure, les contenus s'enrichissent dans toutes les langues et dans tous les pays du monde, rendant le Web plus proche et plus attractif pour les particuliers.
+
Au fur et à mesure, les sites Web s'enrichissent dans toutes les langues et dans tous les pays du monde, rendant le Web plus proche et plus attractif pour les particuliers.
  
 
=== Phase 4 : l'explosion ===
 
=== Phase 4 : l'explosion ===
Line 64: Line 61:
 
3 phénomènes expliquent cette croissance sans précédent.  
 
3 phénomènes expliquent cette croissance sans précédent.  
  
D'abord, le nombre d'hôtes utilisant Internet a augmenté car les consoles de jeux, les tablettes ou les télévisions sont maintenant connectés à Internet.
+
D'abord, le nombre d'hôtes connectés à Internet a augmenté car les consoles de jeux, les tablettes ou les télévisions sont maintenant connectés à Internet.
 +
 
 +
Les troisième et quatrième générations des réseaux mobiles permettent désormais à des terminaux intelligents, comme les smartphones, de transférer non seulement de la voix mais aussi des données, des images et des vidéos..  
  
Les générations 3 et 4 des réseaux mobiles permettent désormais à des terminaux intelligents comme les smartphones, de transférer non seulement de la voix mais aussi des données, des images et des vidéos..
 
 
Il y a désormais 4 à 5 terminaux ou écrans par personne.  
 
Il y a désormais 4 à 5 terminaux ou écrans par personne.  
 
8bis) Les usages évoluent aussi. Comme on le constate sur ce schéma qui représente une minute d'utilisation d'Internet, de nouvelles applications sont massivement utilisées par les internautes comme la vidéo à la demande et le streaming, les réseaux sociaux, le pair-à-pair ou les jeux. Les communications inter-personnelles vidéo se généralisent.
 
  
 
Enfin, ces 20 dernières années, de nombreux pays émergents, en Asie, en Amérique du Sud ou en Afrique, ont connu un développement économique sans précédent. Il s'est accompagné de leur développement technologique conduisant à leur adhésion massive à l'Internet.
 
Enfin, ces 20 dernières années, de nombreux pays émergents, en Asie, en Amérique du Sud ou en Afrique, ont connu un développement économique sans précédent. Il s'est accompagné de leur développement technologique conduisant à leur adhésion massive à l'Internet.
 +
 +
 +
9) Les usages évoluent aussi.
 +
Comme on le constate sur ce schéma qui représente une minute d'utilisation d'Internet, de nouvelles applications sont massivement utilisées par les internautes comme la vidéo à la demande et le streaming, les réseaux sociaux, le pair-à-pair ou les jeux. Les communications inter-personnelles vidéo se généralisent.
  
 
=== Evolution en chiffres ===
 
=== Evolution en chiffres ===
9) Ce graphique confirme la croissance du nombre d'utilisateurs de l'Internet dans chaque région du monde, en 2000 et 2010. Pour toutes les régions du monde, l'accroissement a été très important. Mais c'est l' Asie qui a connu la plus grande croissance. Cette région très peuplée a connu un boom économique sans précédent.  
+
9) Ce graphique confirme la croissance du nombre d'utilisateurs de l'Internet dans chaque région du monde, en 2000 et 2010. Pour toutes les régions du monde, elle a été très importante. Mais c'est l' Asie qui a connu la plus grande croissance. Cette région très peuplée a connu un boom économique sans précédent.  
  
Le nombre d'Internautes en Asie a été ainsi multiplié par 7, pour prendre la tête du nombre d'utilisateurs à la place de l'Europe et des Etats-Unis.  
+
Le nombre d'Internautes en Asie a été ainsi multiplié par 7, pour prendre la tête du nombre d'utilisateurs, à la place de l'Europe et des Etats-Unis.
 +
 
 +
10) Sur ce nouveau graphique, on voit que le nombre d'utilisateurs de l'Internet augmente plus vite que la croissance de la population mondiale.
  
10) Sur ces nouveau graphique,  on voit que le nombre d'utilisateurs de l'Internet augmente plus vite que la croissance de la population mondiale.
 
 
Le nombre d'internautes, environ 4,8 milliards en 2020, représente 59% de la population mondiale.
 
Le nombre d'internautes, environ 4,8 milliards en 2020, représente 59% de la population mondiale.
 +
 
L'Internet n'avait pas été prévu pour supporter une telle croissance.   
 
L'Internet n'avait pas été prévu pour supporter une telle croissance.   
La capacité d'adressage des 32 bits d'adresse, en théorie 4,3 milliards, est donc dépassée.  
+
La capacité d'adressage des 32 bits d'adresse, en théorie 4,3 milliards, est donc largement dépassée.
  
 
== Un problème de taille ! ==
 
== Un problème de taille ! ==
  
  
11)  Revenons à la façon dont les adresses IPv' sont allouées.  
+
11)  Revenons à la façon dont les adresses IPv4 sont allouées.  
Les adresses IPv4 ne sont pas allouées de manière unitaire mais l'allocation porte sur le préfixe réseau. Sa longueur dépend directement du nombre d'adresses d'hôtes nécessaires.  
+
Les adresses IPv4 ne sont pas allouées de manière unitaire mais par préfixes réseau. La longueur du préfixe dépend directement du nombre d'adresses d'hôtes nécessaires.
  
 +
L'allocation  est donc faite à un réseau, en fonction du nombre d'adresses d'hôtes nécessaires pour adresser tous ses hôtes.
 +
 +
Par exemple, si l'on veut adresser 200 hôtes sur un réseau donné, on aura besoin de 8 bits pour le champ hôte car  2^8 est égal à 256 tandis que 2^7 est égal à 128. Le champ hôte sera donc sur 8 bits, et le champ réseau sur 24 bits.
 +
On dispose alors de 256 adresses d'hôtes dont seulement 200 seront utilisées. Le codage binaire de l'adresse engendre une première perte d'adresses.
  
 
== Allocation des adresses ==
 
== Allocation des adresses ==
  
12) Au niveau mondial, l'IANA('Internet Assigned Numbers Authority') répartit grossièrement les  plages d’adresse entre les organismes régionaux de distribution d'adresses appelés RIR (Regional Internet Registry) qui sont au nombre de 6 :
+
12) Au niveau mondial, l'IANA répartit grossièrement les  blocs d’adresse entre les organismes régionaux de distribution d'adresses appelés RIR (Regional Internet Registry) qui sont au nombre de 6. Citons le RIPE NCC en Europe.
African Network Information Center (AFRINIC), 
+
American Registry for Internet Numbers (ARIN),
+
Asia-Pacific Network Information Centre (APNIC),
+
Latin America and Caribbean Network Information Centre (LACNIC) et
+
Réseaux IP Européens Network Coordination Centre (RIPE NCC).  
+
  
Chaque RIR distribue ensuite des plages entre ses membres qui sont des organismes publics ou privés comme des opérateurs. Le camembert de droite montre la répartition des adresses entre les différents RIR. Cette répartition a été faite en phase 2, à un moment où la pression était faible et on a alloué a priori des plages aux régions. On constate que l'Asie ne dispose pas d'un nombre d'adresses en relation avec son nombre d'internautes.
+
Chaque RIR distribue des préfixes à ses membres qui sont des organismes publics ou privés comme des opérateurs. Le camembert de droite montre la répartition inégale des adresses entre les différents RIR. Cette répartition a été faite en 2000 et on constate que l'Asie ne dispose pas d'un nombre d'adresses en relation avec son nombre d'internautes.
 
+
13) Examinons la politique d'allocation d'adresses dans Internet.
+
Par exemple, un RIR dispose d'une plage d'adresses dite en /8 ce qui fait que l'adresse réseau est sur 8 bits et l'adresse hôte sur 24 bits. Chaque bloc /8 comprend au total 16 777 216 adresses. Le RIR découpe son bloc en sous-blocs pour les allouer à ses membres, au plus près de leur besoin d'adresses. Il va allouer par exemple, un  préfixe réseau en /21 à un Fournisseur d'Accès à Internet local. Lequel va allouer à son tour des sous-préfixes à ses différents clients.
+
 
+
La capacité de chaque préfixe correspond à la puissance de 2 immédiatement supérieure au nombre d'adresses souhaitées par le client et on ne peut pas éviter les adresses inutilisées par les membres. Certaines plages ne peuvent plus être allouées si elles sont trop petites.
+
  
 
== Mesures d'urgence ==
 
== Mesures d'urgence ==
 +
 
14)  
 
14)  
 
Dés le début des années 90, l'accroissement du nombre d'hôtes a alerté les instances de l'Internet et plusieurs mesures d'urgence ont été prises.  
 
Dés le début des années 90, l'accroissement du nombre d'hôtes a alerté les instances de l'Internet et plusieurs mesures d'urgence ont été prises.  
La première mesure a consisté à abandonner le système de classes d'adresses. En effet, les classes étaient définies par la valeur du premier octet et leur nombre d'adresses dépendait de la taille du réseau. Cependant, les tailles prédéfinies étaient respectivement, pour la classe A, 16 M d'hôtes, pour B, 65000 et pour C, 256 ! On voit bien que la granularité d'allocation était trop grossière et menait à un gaspillage excessif. Un autre inconvénient était une représentation trop importante des très grands réseaux (50%) aux détriments des petits réseaux, qui étaient les plus nombreux.
 
  
Le Classless Inter-Domain Routing (CIDR), est mis au point en 1993 et la distinction entre les adresses de classe A, B ou C a été ainsi rendue obsolète, de sorte que la totalité de l'espace d'adressage unicast puisse être gérée comme une collection unique de sous-réseaux indépendamment de la notion de classe.
+
La première mesure a consisté à abandonner le système de classes d'adresses. En effet, les classes d'adresses présentaient l'inconvénient de définir une granularité d'allocation trop grossière menant à un gaspillage excessif.  
La longueur du préfixe réseau ne pouvant plus être déduite de l'adresse IP elle-même, elle est alors spécifiée pour chaque adresse en ajoutant à la fin  "/x" où x est le nombre de bits dans le préfixe réseau.
+
 
Par exemple, si un FAI a besoin de 8000 adresses,
+
Un deuxième inconvénient était une représentation trop importante des très grands réseaux (50%) aux détriments des petits réseaux, qui étaient les plus nombreux.
avec les classes, on lui aurait allouer une classe B qui dispose de 65536 adresses d'où un énorme gaspillage
+
 
Sans classe, on peut allouer à ce FAI un bloc /19 soit 8192 adresses ce qui est proche de son besoin.
+
La méthode sans classe ou Classless Inter-Domain Routing (CIDR), a été mis au point en 1993, de sorte que la totalité de l'espace d'adressage unicast soit disponible.
14bis) ''version raccourcie''
+
Dés le début des années 90, l'accroissement du nombre d'hôtes a alerté les instances de l'Internet et plusieurs mesures d'urgence ont été prises.
+
La longueur du préfixe réseau qui est variable, comme on l'a vu, est spécifiée pour chaque adresse en ajoutant à la fin  "/x" où x est le nombre de bits dans le préfixe réseau.
La première mesure a consisté à abandonner le système de classes d'adresses. En effet, les classes étaient définies par la valeur du premier octet et leur nombre d'adresses dépendait de la taille du réseau. Ce système en classe présentait l'inconvénient de définir une granularité d'allocation trop grossière menant à un gaspillage excessif. Un deuxième inconvénient était une représentation trop importante des très grands réseaux (50%) aux détriments des petits réseaux, qui étaient les plus nombreux.
+
  
Le Classless Inter-Domain Routing (CIDR), a été mis au point en 1993, de sorte que la totalité de l'espace d'adressage unicast puisse être gérée comme une collection unique de sous-réseaux indépendamment de la notion de classe.
 
La longueur du préfixe réseau ne pouvant plus être déduite de l'adresse IP elle-même, elle est alors spécifiée pour chaque adresse en ajoutant à la fin  "/x" où x est le nombre de bits dans le préfixe réseau.
 
 
Par exemple, si un FAI a besoin de 8000 adresses,
 
Par exemple, si un FAI a besoin de 8000 adresses,
avec les classes, on lui aurait allouer une classe B qui dispose de 65536 adresses d'où un énorme gaspillage !
+
-avec les classes, on lui aurait allouer une classe B qui dispose de 65536 adresses d'où un énorme gaspillage !
Sans classe, on peut allouer à ce FAI un bloc /19 soit 8192 adresses ce qui est proche de son besoin.
+
-Sans classe, on peut allouer à ce FAI un bloc /19 soit 8192 adresses ce qui est proche de son besoin.
  
15) La deuxième mesure consiste à économiser les adresses publiques d'une part en utilisant un adressage privé dans le sous-réseau, et d'autre part, en partageant l'adresse publique allouée entre les hôtes du sous-réseau.
+
15) La deuxième mesure consiste à économiser les adresses publiques en combinant  un adressage privé dans le sous-réseau, et le partage de l'adresse publique entre les hôtes en sortie du sous-réseau.  
Un système de translation d'une adresse privée vers une adresse publique a été alors développé dans les routeurs et les box : le NAT ou Network Address Translation. La translation d'adresses consiste à modifier deux champs des entêtes IP et TCP : l'adresse IP source ainsi que le port TCP ou UDP source, et ce pour chaque paquet sortant.
+
Alors que le forfait de connexion Internet standard d'un abonné à un FAI ne fournit qu'une seule adresse publique et routable, ce mécanisme permet de connecter plusieurs terminaux par maison.  
+
  
16) Nous allons détailler le fonctionnement de NAT à travers un exemple courant d'interconnexion d'une maison à son réseau d'opérateur.
+
Un système de translation d'une adresse privée vers une adresse publique a été alors développé dans les routeurs et les box : le NAT ou Network Address Translation.  
Sur la figure de gauche, dans le réseau local, chaque hôte sur le réseau local du domicile dispose d'une adresse publique. En l'absence de translation, le réseau résidentiel dispose d'une plage d'adresse allouée par son opérateur, par exemple : 123.45.67.0/28 qui lui donnent la possibilité d'adresser jusqu'à 16 hôtes. Ces adresses sont publiques et donc routables sur l'Internet.
+
La translation d'adresses consiste à modifier deux champs des entêtes IP et TCP : l'adresse IP source ainsi que le port TCP ou UDP source, et ce pour chaque paquet sortant.
Depuis le début du raccordement des particuliers à Internet, le fournisseur d'accès ne distribue avec le forfait qu'une seule adresse IP publique à chaque abonné. Comme il y a plein de terminaux à raccorder dans chaque maison, le routeur ou la box met en place un adressage privé c'est-à-dire qu'il distribue des adresses privées à chaque machine connectée au moyen du protocole de configuration automatique, DHCP (Dynamic Host Configuration Protocol). Dans le RFC 6761, plusieurs plages d'adresses privées sont réservées dont le préfixe : 192.168.0.0/16.
+
  
Sur la figure de droite, dans le réseau local, les adresses allouées sont privées et non routables sur l'Internet, le mécanisme de translation NAT au passage d'un paquet sortant va remplacer l'adresse IP source privée par l'adresse publique de cet abonné. Il modifie aussi le numéro de port TCP pour différencier l'adresse de Maman de celle d'Alice ! Cette translation est enregistrée dans une table ce qui permet de faire la translation inverse lorsqu'un paquet arrive de l'Internet.
+
Alors que le forfait de connexion Internet standard d'un abonné à un FAI ne fournit qu'une seule adresse publique et routable, ce mécanisme permet de connecter plusieurs terminaux par maison.  
  
 
== Bilan des mesures d'urgence ==
 
== Bilan des mesures d'urgence ==
17) Les mesures que nous venons de décrire ont été assez efficaces à court terme. Regardons ce graphique qui présente l'évolution du nombre d'adresses pour nous en convaincre.
+
16) Les mesures que nous venons de décrire ont été assez efficaces à court terme. Regardons ce graphique qui présente l'évolution du nombre d'adresses pour nous en convaincre.
En 93, CIDR a permis d'infléchir la courbe qui aurait augmenté beaucoup plus vite sinon comme indiqué par les courbes en pointillés. Dans le même temps, le NAT a aussi permis de réduire la demande qui devenait linéaire, comme indiqué par la courbe bleue claire en pointillé. Mais c'était sans compter l'arrivée de l'ADSL et des mobiles qui ont fait exploser le nombre d'internautes.
+
 
 +
En 93, CIDR a permis d'infléchir la courbe qui aurait augmenté beaucoup plus vite sinon comme indiqué par les courbes en pointillés.  
 +
 
 +
Dans le même temps, le NAT a aussi permis de réduire la demande qui devenait linéaire, comme indiqué par la courbe bleue claire en pointillé.  
 +
 
 +
Mais c'était sans compter l'arrivée de l'ADSL et des mobiles qui ont fait exploser le nombre d'internautes.
  
  
18) CIDR est une amélioration pérenne car maintenant, toutes les plages d'adresses sont disponibles et il n'y plus autant de gaspillage.  
+
17) CIDR est une amélioration pérenne car maintenant, toutes les plages d'adresses sont disponibles et il n'y plus autant de gaspillage.  
'' utile ? Il permet de plus de réduire le nombre d'entrées dans les tables de routage, car l'allocation par blocs et sous-blocs permet de synthétiser (summarize) de multiples sous-réseaux en une adresse de super-réseau. ''
+
  
 
L'utilisation d'un adressage privé et la translation NAT ont permis de ralentir la croissance de la courbe du nombre d'adresses allouées, qui à partir de 1995, d'exponentielle devient linéaire.  
 
L'utilisation d'un adressage privé et la translation NAT ont permis de ralentir la croissance de la courbe du nombre d'adresses allouées, qui à partir de 1995, d'exponentielle devient linéaire.  
  
Cependant, cette technique s'est répandue au delà de sa cible initiale. Ainsi, certains opérateurs, par manque d'adresses publiques, ont recours à la technique du "double NAT" dans laquelle le réseau de l'opérateur lui-même est en adressage privé. Ainsi, le client de l'opérateur n'a même plus une adresse publique. Le NAT du client final se retrouve à faire un passage d'un adressage privé à un autre adressage privé. Cette solution a été notamment adoptée par les opérateurs mobiles lorsque leurs utilisateurs se sont mis à utiliser massivement les services de données et Internet.
+
Cependant, cette technique s'est répandue au delà de sa cible initiale.  
  
Néanmoins, la translation d'adresses n'est pas sans conséquences sur le réseau et le transfert de paquets.
+
Ainsi, les opérateurs mobiles, par manque d'adresses publiques, ont recours à la technique du "double NAT" dans laquelle le réseau de l'opérateur lui-même est en adressage privé. Le client de l'opérateur n'a même plus une adresse publique.  
Son premier inconvénient est pour le routeur. Il exécute plus de traitement sur de chaque paquet ce qui ralentit le relayage. Le temps de traitement n'est pas préjudiciable tant que le NAT est cantonné au routeur d'accès à Internet (la box ou le routeur de l'entreprise) où le trafic est faible et le débit des liens aussi. NAT impose aussi le maintien d'un état des adresses et ports translatés dans les routeurs, ce qui est contraire aux principes d'indépendance du réseau vis-à-vis de ses utilisateurs ou applications. En effet, le mode datagramme implique des paquets auto-suffisants (portant les adresses pour le routage) et indépendants les uns des autres (on ne devrait pas savoir qu'un paquet qui arrive au routeur est la réponse à un paquet envoyé précédemment).
+
  
NAT nuit au bon fonctionnement des applications client-serveur ou pair-à-pair. En effet, un serveur ou un téléphone IP ont besoin d'une adresse IP publique et d'un numéro de port réservé pour être contacté. Ce qui n'est plus possible derrière une passerelle NAT. Pour contourner ce problème, des mécanismes complexes de redirection de ports ont été mis en place.
+
Le NAT du client final se retrouve à faire un passage d'un adressage privé à un autre adressage privé.
 +
 
 +
De plus, la translation d'adresses n'est pas sans conséquences sur le réseau et le transfert de paquets.
 +
 
 +
Son premier inconvénient est pour le routeur. Il exécute plus de traitement sur chaque paquet ce qui ralentit le relayage.
 +
 
 +
Deuxièmement, NAT aussi le maintien d'un état des adresses et ports translatés dans les routeurs, ce qui est contraire aux principes d'indépendance du réseau vis-à-vis de ses utilisateurs ou applications.
 +
 
 +
 
 +
NAT nuit au bon fonctionnement des applications client-serveur ou pair-à-pair. En effet, un serveur ou un téléphone IP ont besoin d'une adresse IP publique et d'un numéro de port réservé pour être contacté.  
 +
 
 +
Ce qui n'est plus possible derrière une passerelle NAT. Pour contourner ce problème, des mécanismes complexes de redirection de ports ont été mis en place.
  
 
Pour les applications client-serveur, il coupe les connexions TCP de bout-en-bout. La communication est alors une succession de tronçons entre deux passerelles NAT. Cela empêche certains de ses mécanismes de bien fonctionner.  
 
Pour les applications client-serveur, il coupe les connexions TCP de bout-en-bout. La communication est alors une succession de tronçons entre deux passerelles NAT. Cela empêche certains de ses mécanismes de bien fonctionner.  
Line 157: Line 161:
 
Ces multiples inconvénients remettent en question l'utilisation de NAT à long terme.
 
Ces multiples inconvénients remettent en question l'utilisation de NAT à long terme.
  
19) Conclusion
+
18) Conclusion
  
La pénurie d'adresses publiques est un phénomène connu et déjà ancien qui empire chaque année pour les nombreuses raisons que nous avons évoquées. Depuis 2011, les RIRE ont presque épuisé tous leurs blocs d'adresse. Des solutions ont été mises en oeuvre mais elles peuvent complexifier les traitements des paquets dans le réseau. Ainsi, NAT ne peut être qu'une solution temporaire qu'il convient d'abandonner. Il faut retrouver un réseau simple.
+
La pénurie d'adresses publiques est un phénomène connu et déjà ancien qui empire chaque année pour les nombreuses raisons que nous avons évoquées.  
  
La demande d'adresses va exploser avec l'Internet des objets et l'industrie 4.0. Dans son rapport, CISCO recense environ 20 milliards milliards d'objets connectés en 2020, avec environ 200 objets par personne. Ce nombre pourrait augmenter jusqu'à 50 milliards à terme. Il est à relativiser car le plus souvent, seulement une passerelle  qui fédérera les objets, accèdera à Internet. Mais même si on divise 50 milliards par 100 ou 1000, c'est colossal !
+
Depuis 2011, les RIRE ont presque épuisé tous leurs blocs d'adresse. Des solutions ont été mises en oeuvre mais elles peuvent complexifier les traitements des paquets dans le réseau.
 
+
https://gblogs.cisco.com/fr/datacenter/50-milliards-dobjets-connectes-en-2020/
+
https://fr.statista.com/statistiques/584481/internet-des-objets-nombre-d-appareils-connectes-dans-le-monde--2020/
+
  
 +
Ainsi, NAT ne peut être qu'une solution temporaire qu'il convient d'abandonner. Il faut retrouver un réseau simple.
 +
 +
La demande d'adresses va exploser avec l'Internet des objets et l'industrie 4.0.
 +
 +
Dans un rapport, CISCO recense environ 20 milliards milliards d'objets connectés en 2020, avec environ 200 objets par personne.
 +
 +
Ce nombre pourrait augmenter jusqu'à 50 milliards à terme. Il est à relativiser car le plus souvent, seulement une passerelle  qui fédérera les objets, accèdera à Internet. Mais même si on divise 50 milliards par 100 ou 1000, c'est colossal !
 +
 
 
Le protocole IPv6 en donnant une capacité d'adressage immense va permettre d'intégrer ces nouveaux usages et de redonner sa simplicité au réseau.
 
Le protocole IPv6 en donnant une capacité d'adressage immense va permettre d'intégrer ces nouveaux usages et de redonner sa simplicité au réseau.

Latest revision as of 16:14, 28 February 2022

Activité 03 : Évolution d'Internet

1) Bonjour à tous ! Bienvenue dans cette vidéo sur l'évolution de l'Internet.

2) Dans cette vidéo, nous allons présenter les 4 phases de l'évolution d'Internet, de sa conception à la situation actuelle. A l'aide de graphiques, nous montrerons la croissance du nombre d'utilisateurs et de réseaux connectés durant ces 40 ans.

Nous expliquerons la politique d'allocation des adresses IPv4. Et nous verrons comment l'explosion de la demande et la taille limitée de l'adresse ont conduit à épuiser les adresses disponibles.

Finalement, nous présenterons les solutions développées pour pallier le manque d'adresses.

Evolution en 4 phases

3) Ce graphique de l'Internet Society présente des années 70 à 2000, une croissance en 3 phases, pour arriver à environ 100 millions d'hôtes connectés. 20 ans plus tard, la croissance a continué de manière exponentielle pour arriver à 4,5 milliards d'utilisateurs. C'est pourquoi il nous a paru nécessaire d'ajouter une quatrième phase couvrant ces 20 dernières années : l'explosion.

Phase 1 : l'expérimentation

4) La première phase est dite expérimentale. En pleine guerre froide, le DARPA (Département de la Défense Américaine) souhaite interconnecter différents sites avec un contrôle décentralisé pour éviter une attaque du centre de contrôle et pour qu'une panne de site n'affecte pas le fonctionnement du réseau et des autres sites. L'intelligence répartie sur tous les éléments est le principe fondateur de l'Internet.

C'est révolutionnaire pour l'époque car les réseaux étaient très centralisés. Ils travaillaient en mode connecté et un centre de contrôle gérait tout le fonctionnement du réseau.


Le mode réparti va donc être décliné dans les premiers protocoles développés. Contrairement au routage centralisé, tous les noeuds du réseau participent au routage en s'envoyant des informations de connectivité afin que chacun construise sa table de routage.


IPv4 est spécifié en 1981 dans le RFC 791. Il définit d'une part, l'adresse sur 32 bits et son format en 2 champs de longueur variable, et d'autre part, le paquet, l'unité de données de transfert.

5) En 1983, le réseau Arpanet a été séparé du réseau militaire pour rester utilisé par des écoles et des universités américaines.

L'intégration par l'Université de Berkeley des protocoles TCP/IP dans le noyau du système d'exploitation Unix est un événement très important. Cela va accélérer la diffusion des protocoles de l'Internet et son adhésion par le plus grand nombre.

Phase 2: les tests en vraie grandeur

6) Les années 80 voient la généralisation des stations de travail sous Unix, autonomes, mais avec des capacités limitées.

Elles ont besoin de communiquer entre elles pour l'accès à des ressources partagées comme le système de fichiers ou les imprimantes. La pile TCP/IP va être massivement utilisée pour ces communications locales.

Cerise sur le gâteau, les protocoles Internet proposent des applications de communication inter-personnelle comme le mail, le transfert de fichiers, ou les news. Très vite, les chercheurs et les ingénieurs vont les adopter pour échanger des informations scientifiques entre collègues du monde entier.

Ces utilisateurs experts vont réaliser des tests en vraie grandeur de l'Internet.

Phase 3 : l'universalité

7) En parallèle, la micro-informatique se développe. Les particuliers commencent à s'équiper d'ordinateurs personnels pas très performants mais très économiques.

Et grâce à la technologie ADSL, dès la fin des années 90, le débit d'accès résidentiel va être dopé en utilisant toute la capacité des paires téléphoniques.

Mais ces avancées ne suffisent pas à elles seules à expliquer l'adhésion universelle à Internet.

Les années 90 c'est aussi le boom des interfaces graphiques qui va simplifier l'accès des utilisateurs aux informations. Plus besoin de connaître les commandes Unix. Les contenus contiennent toujours des textes qui sont enrichis par des images, des sons et des vidéos.

Dés cette époque, dans l'Internet se pose le problème de la recherche d'informations et les premiers moteurs de recherche font leur apparition.

Mais le progrès le plus significatif a été le développement de l'application Web. Le serveur Web propose des contenus à ses clients sous forme de sites et de pages Web. Côté client, les navigateurs formattent ces contenus. Les pages sont chaînées entre elles grâce aux liens hypertexte. Ce qui facilite énormément l'accès à l'information.

Au fur et à mesure, les sites Web s'enrichissent dans toutes les langues et dans tous les pays du monde, rendant le Web plus proche et plus attractif pour les particuliers.

Phase 4 : l'explosion

8) La 4ème phase que nous vivons actuellement pourrait s’appeler l’explosion ! 3 phénomènes expliquent cette croissance sans précédent.

D'abord, le nombre d'hôtes connectés à Internet a augmenté car les consoles de jeux, les tablettes ou les télévisions sont maintenant connectés à Internet.

Les troisième et quatrième générations des réseaux mobiles permettent désormais à des terminaux intelligents, comme les smartphones, de transférer non seulement de la voix mais aussi des données, des images et des vidéos..

Il y a désormais 4 à 5 terminaux ou écrans par personne.

Enfin, ces 20 dernières années, de nombreux pays émergents, en Asie, en Amérique du Sud ou en Afrique, ont connu un développement économique sans précédent. Il s'est accompagné de leur développement technologique conduisant à leur adhésion massive à l'Internet.


9) Les usages évoluent aussi. Comme on le constate sur ce schéma qui représente une minute d'utilisation d'Internet, de nouvelles applications sont massivement utilisées par les internautes comme la vidéo à la demande et le streaming, les réseaux sociaux, le pair-à-pair ou les jeux. Les communications inter-personnelles vidéo se généralisent.

Evolution en chiffres

9) Ce graphique confirme la croissance du nombre d'utilisateurs de l'Internet dans chaque région du monde, en 2000 et 2010. Pour toutes les régions du monde, elle a été très importante. Mais c'est l' Asie qui a connu la plus grande croissance. Cette région très peuplée a connu un boom économique sans précédent.

Le nombre d'Internautes en Asie a été ainsi multiplié par 7, pour prendre la tête du nombre d'utilisateurs, à la place de l'Europe et des Etats-Unis.

10) Sur ce nouveau graphique, on voit que le nombre d'utilisateurs de l'Internet augmente plus vite que la croissance de la population mondiale.

Le nombre d'internautes, environ 4,8 milliards en 2020, représente 59% de la population mondiale.

L'Internet n'avait pas été prévu pour supporter une telle croissance. La capacité d'adressage des 32 bits d'adresse, en théorie 4,3 milliards, est donc largement dépassée.

Un problème de taille !

11) Revenons à la façon dont les adresses IPv4 sont allouées. Les adresses IPv4 ne sont pas allouées de manière unitaire mais par préfixes réseau. La longueur du préfixe dépend directement du nombre d'adresses d'hôtes nécessaires.

L'allocation est donc faite à un réseau, en fonction du nombre d'adresses d'hôtes nécessaires pour adresser tous ses hôtes.

Par exemple, si l'on veut adresser 200 hôtes sur un réseau donné, on aura besoin de 8 bits pour le champ hôte car 2^8 est égal à 256 tandis que 2^7 est égal à 128. Le champ hôte sera donc sur 8 bits, et le champ réseau sur 24 bits. On dispose alors de 256 adresses d'hôtes dont seulement 200 seront utilisées. Le codage binaire de l'adresse engendre une première perte d'adresses.

Allocation des adresses

12) Au niveau mondial, l'IANA répartit grossièrement les blocs d’adresse entre les organismes régionaux de distribution d'adresses appelés RIR (Regional Internet Registry) qui sont au nombre de 6. Citons le RIPE NCC en Europe.

Chaque RIR distribue des préfixes à ses membres qui sont des organismes publics ou privés comme des opérateurs. Le camembert de droite montre la répartition inégale des adresses entre les différents RIR. Cette répartition a été faite en 2000 et on constate que l'Asie ne dispose pas d'un nombre d'adresses en relation avec son nombre d'internautes.

Mesures d'urgence

14) Dés le début des années 90, l'accroissement du nombre d'hôtes a alerté les instances de l'Internet et plusieurs mesures d'urgence ont été prises.

La première mesure a consisté à abandonner le système de classes d'adresses. En effet, les classes d'adresses présentaient l'inconvénient de définir une granularité d'allocation trop grossière menant à un gaspillage excessif.

Un deuxième inconvénient était une représentation trop importante des très grands réseaux (50%) aux détriments des petits réseaux, qui étaient les plus nombreux.

La méthode sans classe ou Classless Inter-Domain Routing (CIDR), a été mis au point en 1993, de sorte que la totalité de l'espace d'adressage unicast soit disponible.

La longueur du préfixe réseau qui est variable, comme on l'a vu, est spécifiée pour chaque adresse en ajoutant à la fin "/x" où x est le nombre de bits dans le préfixe réseau.

Par exemple, si un FAI a besoin de 8000 adresses, -avec les classes, on lui aurait allouer une classe B qui dispose de 65536 adresses d'où un énorme gaspillage ! -Sans classe, on peut allouer à ce FAI un bloc /19 soit 8192 adresses ce qui est proche de son besoin.

15) La deuxième mesure consiste à économiser les adresses publiques en combinant un adressage privé dans le sous-réseau, et le partage de l'adresse publique entre les hôtes en sortie du sous-réseau.

Un système de translation d'une adresse privée vers une adresse publique a été alors développé dans les routeurs et les box : le NAT ou Network Address Translation. La translation d'adresses consiste à modifier deux champs des entêtes IP et TCP : l'adresse IP source ainsi que le port TCP ou UDP source, et ce pour chaque paquet sortant.

Alors que le forfait de connexion Internet standard d'un abonné à un FAI ne fournit qu'une seule adresse publique et routable, ce mécanisme permet de connecter plusieurs terminaux par maison.

Bilan des mesures d'urgence

16) Les mesures que nous venons de décrire ont été assez efficaces à court terme. Regardons ce graphique qui présente l'évolution du nombre d'adresses pour nous en convaincre.

En 93, CIDR a permis d'infléchir la courbe qui aurait augmenté beaucoup plus vite sinon comme indiqué par les courbes en pointillés.

Dans le même temps, le NAT a aussi permis de réduire la demande qui devenait linéaire, comme indiqué par la courbe bleue claire en pointillé.

Mais c'était sans compter l'arrivée de l'ADSL et des mobiles qui ont fait exploser le nombre d'internautes.


17) CIDR est une amélioration pérenne car maintenant, toutes les plages d'adresses sont disponibles et il n'y plus autant de gaspillage.

L'utilisation d'un adressage privé et la translation NAT ont permis de ralentir la croissance de la courbe du nombre d'adresses allouées, qui à partir de 1995, d'exponentielle devient linéaire.

Cependant, cette technique s'est répandue au delà de sa cible initiale.

Ainsi, les opérateurs mobiles, par manque d'adresses publiques, ont recours à la technique du "double NAT" dans laquelle le réseau de l'opérateur lui-même est en adressage privé. Le client de l'opérateur n'a même plus une adresse publique.

Le NAT du client final se retrouve à faire un passage d'un adressage privé à un autre adressage privé.

De plus, la translation d'adresses n'est pas sans conséquences sur le réseau et le transfert de paquets.

Son premier inconvénient est pour le routeur. Il exécute plus de traitement sur chaque paquet ce qui ralentit le relayage.

Deuxièmement, NAT aussi le maintien d'un état des adresses et ports translatés dans les routeurs, ce qui est contraire aux principes d'indépendance du réseau vis-à-vis de ses utilisateurs ou applications.


NAT nuit au bon fonctionnement des applications client-serveur ou pair-à-pair. En effet, un serveur ou un téléphone IP ont besoin d'une adresse IP publique et d'un numéro de port réservé pour être contacté.

Ce qui n'est plus possible derrière une passerelle NAT. Pour contourner ce problème, des mécanismes complexes de redirection de ports ont été mis en place.

Pour les applications client-serveur, il coupe les connexions TCP de bout-en-bout. La communication est alors une succession de tronçons entre deux passerelles NAT. Cela empêche certains de ses mécanismes de bien fonctionner.

Ces multiples inconvénients remettent en question l'utilisation de NAT à long terme.

18) Conclusion

La pénurie d'adresses publiques est un phénomène connu et déjà ancien qui empire chaque année pour les nombreuses raisons que nous avons évoquées.

Depuis 2011, les RIRE ont presque épuisé tous leurs blocs d'adresse. Des solutions ont été mises en oeuvre mais elles peuvent complexifier les traitements des paquets dans le réseau.

Ainsi, NAT ne peut être qu'une solution temporaire qu'il convient d'abandonner. Il faut retrouver un réseau simple.

La demande d'adresses va exploser avec l'Internet des objets et l'industrie 4.0.

Dans un rapport, CISCO recense environ 20 milliards milliards d'objets connectés en 2020, avec environ 200 objets par personne.

Ce nombre pourrait augmenter jusqu'à 50 milliards à terme. Il est à relativiser car le plus souvent, seulement une passerelle qui fédérera les objets, accèdera à Internet. Mais même si on divise 50 milliards par 100 ou 1000, c'est colossal !

Le protocole IPv6 en donnant une capacité d'adressage immense va permettre d'intégrer ces nouveaux usages et de redonner sa simplicité au réseau.

Personal tools