Difference between revisions of "MOOC:Compagnon Act21-s7"

From Livre IPv6

(Pour aller plus loin)
(Longueur des données utiles (Payload Length))
Line 52: Line 52:
  
 
{{TODO| 64 kibioctets serait plus juste.}}
 
{{TODO| 64 kibioctets serait plus juste.}}
 +
{{TODO|Corrigé}}
  
 
=== En-tête suivant ('' Next Header'')===
 
=== En-tête suivant ('' Next Header'')===

Revision as of 10:45, 12 April 2016


Activité 21: Le format de l’en-tête IPv6

Principes structurant l'en-tête IP

Comme rappelé en introduction de la séquence, l'objectif du protocole IP est d'acheminer un paquet d'un point à un autre de l'Internet. Le modèle datagramme impose que chaque paquet soit traité indépendamment, sans se baser sur des informations issues d'autres paquets déjà transmis. L'en-tête IP doit donc comporter toutes les informations pour réaliser cet acheminement. C'est la raison pour laquelle chaque paquet doit contenir l'adresse de l'émetteur ainsi que du destinataire du paquet.

L'adresse du destinataire est très importante pour les équipements intermédiaires réalisant la fonction de routage. C'est en effet à partir de cette adresse que l'équipement décide vers quelle interface le paquet sera retransmis. La lecture de l'adresse du destinataire dans l'en-tête IP est donc une étape cruciale pour la performance globale de l'acheminement du paquet. Afin d'optimiser cette étape, 2 principes ont été appliqués dans la spécification de l'en-tête IP :

  • Une adresse IP est de taille fixe, permettant ainsi d'être récupérée dans l'en-tête directement en lisant un nombre de bits prédéterminé, sans avoir à lire et interpréter au préalable un champ longueur d'adresse.
  • L'adresse IP destination est à un emplacement fixe dans l'en-tête, emplacement aligné en mémoire, facilitant ainsi son extraction de l'en-tête par un simple décalage en mémoire qui est une opération optimisée au niveau matériel.

Format de l'en-tête du paquet IPv6

Le format d'en-tête du paquet IPv6 est spécifié par le RFC 2460 page 4. Cet en-tête, avec les champs le composant, est représenté par la figure 1. L'en-tête IPv6 est de taille fixe et se compose de 5 mots de 64 bits (contre 5 mots de 32 bits pour IPv4). La taille de l'en-tête IPv6 est ainsi de 40 octets.


Figure 1 : Format de l'en-tête d'un paquet IPv6.

Valeurs des champs de l'en-tête

Version

Le champ version est au même emplacement et de même longueur quelque soit la version du protocole IP (pour l'instant IPv4 ou IPv6). Cette similarité permet à la pile réseau d'aiguiller correctement le paquet en se basant sur les 4 premiers bits de l'en-tête de niveau 3. Dans le cas d'IPv6 , sa valeur est de 6 ; elle est de 4 pour IPv4. Le numéro de version 5 avait déjà été attribué au protocole Stream qui finalement n'a pas eu le succès attendu (RFC 1190, RFC 1819).

Classe de trafic (Traffic Class)

Dans la version standardisée par le RFC 2460, un champ classe de trafic, sur 8 bits, permet la différenciation de services, conformément aux spécifications du RFC 2474.

Le champ classe de trafic est aussi appelé, dans les paquets IPv4, octet DiffServ (DS). Il prend la place du champ ToS, initialement défini dans la spécification d'IPv4 (cf. figure 2). Le champ DS est découpé en deux parties. Le sous-champ DSCP (DiffServ Code Point) contient les valeurs des différents comportements. Les deux derniers bits du champ, notés ECN (Explicit congestion Notification), servent aux routeurs à reporter un risque de congestion en combinaison avec l'algorithme RED (Random Early Detection). Le codage des 2 bits ECN est décrit à la page 6 du RFC 6040.

Figure 2 : Format de l'octet classe de trafic.

Plus de détails sur l'utilisation de ce champ sont donnés en Annexe 1.

Identificateur de flux (Flow Label)

Ce champ, introduit dans le RFC 2460 puis spécifié en détail dans le RFC 6437, contient un numéro unique, choisi par la source, pour identifier de manière unique un flux de donnée d'une application (l'ensemble des paquets voix d'une application de voix sur IP par exemple).

Cette valeur a pour but de faciliter le travail des routeurs dans le traitement différencié de paquet et donc la mise en oeuvre des fonctions de qualité de service, comme RSVP (RFC 2205). En identifiant par cette valeur les paquets provenant d'un même flux, le routeur peut alors faire un traitement particulier : choix d'une route, traitement en "temps réel" de l'information.

TODO: Je ne comprends pas l'avant-dernière phrase ci-dessus : "marque à un contexte". C'est peut-être la notion de "contexte" qu'il faudrait définir au préalable.
TODO: BS J'ai mieux défini ce qu'on appelle flux et précisé la notion de contexte ci-dessous. Est-ce plus clair ?

Habituellement, les routeurs se basent sur les valeurs de cinq champs pour construire un contexte propre à un même flux de donnée : adresses de la source et de la destination, numéros de port de la source et de la destination, et protocole. Ce contexte sert à router plus rapidement les paquets puisqu'il évite de consulter les tables de routage pour chaque paquet. Ce contexte est détruit après une période d'inactivité.

Avec IPv6, cette technique est officialisée. Le champ identificateur de flux peut être rempli avec une valeur aléatoire qui servira à référencer le contexte. La source gardera cette valeur pour tous les paquets qu'elle émettra pour cette application et cette destination. Le traitement est optimisé puisque le routeur n'a plus à consulter cinq champs pour déterminer l'appartenance d'un paquet. De plus, si une extension de confidentialité est utilisée, les informations concernant les numéros de port sont masquées aux routeurs intermédiaires.

Passage à l'échelle

Le passage à l'échelle désigne la capacité d'un produit ou d'un mécanisme à s'adapter à un changement d'ordre de grandeur de la demande (montée en charge), en particulier sa capacité à maintenir ses fonctionnalités et ses performances en cas de forte demande[1]. Il faut donc comprendre qu'une difficulté à passer à l'échelle signifie que la propriété d'extensibilité n'est pas acquise.

À la date de rédaction de ce document, l'utilisation de l'étiquette de flux reste encore floue. Les micro-flux, c'est-à-dire de flux applicatifs, ne sont pas analysés dans le coeur du réseau pour des raisons de passage à l'échelle. De plus, MPLS a repris la notion de "routage spécifique en fonction d'une étiquette". Pour l'instant, ce champ peut être vu comme réservé. Son utilisation pourra être mieux spécifiée dans le futur.

Longueur des données utiles (Payload Length)

Ce champ indique la taille, en octets, des données utiles ; c'est-à-dire les données à la suite de l'en-tête. Les éventuelles extensions à l'en-tête IPv6 sont incluses dans ces données. Ce champ, sur 16 bits, peut donc indiquer une taille des données utiles, allant jusqu'à 64 kibi-octets (64 * 1024 octets). Pour des paquets dont la taille serait supérieure, ce champ vaut 0 et l'émetteur ajoute une extension d'en-tête de "proche en proche" avec l'option jumbogramme définie par le RFC 2675. Cette extension est essentiellement prévue pour la transmission à grand débit entre deux équipements.

TODO: 64 kibioctets serait plus juste.
TODO: Corrigé

En-tête suivant ( Next Header)

Ce champ identifie le prochain en-tête se trouvant à la suite de l'en-tête IPv6. Il peut s'agir d'un protocole de niveau supérieur (ICMP, UDP, TCP...) ou de la désignation d'une extension (cf. tableau Valeurs du champ en-tête suivant pour IPv6).

Valeurs du champ en-tête suivant pour IPv6
valeur Hexa Protocole ou Extension
0 0x00 Proche-en-proche
4 0x04 IPv4
6 0x06 TCP
17 0x11 UDP
41 0x29 IPv6
43 0x2b Routage
44 0x2c Fragmentation
50 0x32 Confidentialité
51 0x33 Authentification
58 0x3a ICMPv6
59 0x3b Fin des en-têtes
60 0x3c Destination
132 0x84 SCTP
135 0x87 Mobilité
136 0x88 UDP-lite
140 0x8c Shim6

Nombre maximal de sauts (Hop Limit)

Ce champ représente le nombre maximal de routeurs que le paquet peut traverser. Il est initialisé par la source du paquet et, ensuite, décrémenté à chaque nœud traversé. Un datagramme retransmis par un routeur est rejeté avec l'émission d'un message d'erreur ICMPv6 vers la source si la valeur, après décrémentation, atteint 0. Ce mécanisme permet d'éliminer des paquets persistant trop longtemps dans le réseau pour cause de problèmes de configuration, comme les boucles de routage. Il est aussi utilisé par des outils d'ingénierie des réseaux comme traceroute pour signaler à la source l'ensemble des routeurs traversés jusqu'à une destination.

La valeur initiale de ce champ, à l'émission du paquet, devrait être donnée dans un document annexe de l'IANA (http://www.iana.org/) ; ce qui permettrait de la modifier en fonction de l'évolution de la topologie du réseau. La valeur n'est pas encore officiellement attribuée mais certaines implantations prennent actuellement la valeur conseillée pour IPv4 : 64.

La valeur par défaut peut être dynamiquement attribuée aux équipements du réseau par les annonces des routeurs en configuration automatique. Une modification de ce paramètre sera donc relativement simple quand la limite actuelle sera atteinte. On peut noter une limitation puisque ce champ, codé sur 8 bits, n'autorise la traversée que de 255 routeurs. En réalité, dans l'Internet actuel, le nombre maximal de routeurs traversés est d'une quarantaine ; ce qui laisse une bonne marge pour l'évolution du réseau.

Adresses source et destination

Ces adresses sont renseignées par l'émetteur du paquet pour désigner l'émetteur et le destinataire du paquet. Pour renseigner l'adresse source, l'émetteur choisit de préférence une adresse IPv6 parmi celles configurées sur l'interface utilisée pour transmettre le paquet sur le réseau. Cette adresse est choisie pour avoir une portée compatible avec l'adresse de destination et, ainsi, permettre au destinataire de répondre. Par exemple, il serait problématique d'essayer de joindre une machine de l'Internet en donnant comme adresse source une adresse lien-local. Le mécanisme de choix de l'adresse source est spécifié dans le RFC 6724.

L'adresse destination, elle aussi, peut être choisie dans la liste des adresses valables pour le destinataire ; liste pouvant provenir de la résolution d'un nom en adresses par le DNS. L'adresse choisie doit être compatible avec la portée des adresses disponibles au niveau de l'émetteur. Par exemple, si l'émetteur ne possède que des adresses de type ULA, et que le destinataire est connu avec des adresses globales et ULA, ces dernières adresses seront à préférer. Le mécanisme du RFC 6724 précise le processus de choix de l'adresse destination.

Extensions à l'en-tête IPv6

L'ajout de nouvelles fonctionnalités est problématique quand l'en-tête est de taille fixe comme c'est le cas d'IPv6. La solution proposée consiste à ajouter des en-têtes spécifiques pour chaque fonctionnalité. Par exemple, si un paquet doit être fragmenté, une extension de fragmentation sera ajoutée par l'émetteur afin que le récepteur puisse rassembler les morceaux correctement. Les extensions sont ajoutées par l'émetteur du paquet pour signaler un traitement spécifique à réaliser, soit par les équipements intermédiaires, soit par le destinataire du paquet. Il existe plusieurs types d'extensions selon le traitement demandé. Elles se placent après l'en-tête IPv6 et avant la charge utile du paquet (voir la figure 3). La présence d'une extension est signalée par le champ En-tête suivant(Next Header) de l'en-tête IPv6 qui possède alors la valeur correspondant à cette extension. Ainsi, elle est traitée par les routeurs intermédiaires comme un protocole de niveau supérieur à IP. L'utilisation des différents types d'extensions d'en-tête IPv6 sera abordé dans l'activité 24.

Figure 3: Format d'un paquet IPv6.

Evolution de l'en-tête depuis IPv4

Hormis la modification de la taille des adresses, ce qui conduit à une taille d'en-tête de 40 octets (le double d'un en-tête IPv4 sans options), le protocole IP a subi un toilettage, reprenant l'expérience acquise au fil d’une trentaine d’années avec IPv4, défini en 1981 (!) par le RFC 791. Le format des en-têtes IPv6 est ainsi simplifié et permet aux routeurs de meilleures performances dans leurs traitements. L'idée est de retirer du cœur de réseau les traitements compliqués. Les routeurs ne font que retransmettre les paquets vers la destination, les autres traitements sont faits par l'émetteur du paquet.

L'en-tête ne contient plus de contrôle d'erreur (checksum), qui devait être ajusté par chaque routeur en raison, entre autres, de la décrémentation du champ durée de vie. Par contre, pour éviter qu'un paquet, dont le contenu est erroné -- en particulier sur l'adresse de destination --, ne se glisse dans une autre communication, tous les protocoles de niveau supérieur doivent mettre en œuvre un mécanisme de contrôle d'erreur de bout en bout, incluant un pseudo-en-tête qui prend en compte les adresses source et destination. Le contrôle d'erreur d'UDP, facultatif pour IPv4, devient ainsi obligatoire. Pour ICMPv6, le contrôle d'erreur intègre le pseudo-en-tête alors que, pour ICMPv4, il ne portait que sur le message ICMP.

La fonction de fragmentation a aussi été retirée des routeurs. Les champs de l'en-tête IPv4 qui s'y reportent (identification, drapeau, place du fragment) ont été supprimés. Normalement, les algorithmes de découverte du PMTU (Path MTU) évitent d'avoir recours à la fragmentation. Si celle-ci s'avère nécessaire, une extension est prévue et le découpage en fragments n'est réalisé uniquement qu'au niveau de l'émetteur.

Une autre évolution majeure depuis l'en-tête IPv4 est la spécification des extensions d'en-tête pour remplacer les options. En effet, dans le cas d'IPv4, les options sont incluses dans l'en-tête. Celui-ci est donc de taille variable (taille indiquée dans le champ Internet Header Length), ce qui peut compliquer le traitement dans les routeurs intermédiaires. Les extensions à l'en-tête IPv6 simplifient la mise en œuvre de ces fonctionnalités et permettent de garder la taille de l'en-tête IPv6 fixe à 40 octets.

Références bibliographiques

  1. Wikipedia.Définition de la scalabilité


Pour aller plus loin

(Analyse par S.Bortzmeyer)

Annexe 1: la gestion de la qualité de service

TODO: Ici, on mélange "classe de trafic" et "classe de service". Si ça désigne la même chose, il faudrait s'en tenir à un seul terme.
TODO: BS Classe de service me semble un terme plus générique, mais ici, au niveau de l'en-tête IP, on parle de classe de trafic

L'Internet différencié permet aux fournisseurs d'accès de gérer différemment les congestions qui surviennent dans le réseau. Sans différenciation, les paquets ont la même probabilité de rejet. Avec la différenciation, plusieurs classes de trafic sont définies. Les paquets appartenant aux classes les plus élevées ont une probabilité de rejet plus faible. Bien entendu, pour que l'introduction de telles classes de trafic soit efficace, il faut introduire une gestion des ressources différente pour chacune des classes, et des mécanismes de contrôle pour vérifier que les flux des utilisateurs n'utilisent pas que les classes les plus élevées ou qu'ils ne dépassent pas leur contrat. Par exemple, un client peut établir un contrat de niveau de services appelé SLA (Service Level Agreement) avec son fournisseur d’accès.

L'intérêt principal de la différenciation de services est qu'elle ne casse pas le modèle initial de l'Internet (version 4 ou version 6). Les flux sont toujours traités en Best Effort même si certains sont plus Best que d'autres. Il n'y a aucune garantie qu'un trafic d'une classe haute arrive à destination, mais la probabilité est plus importante. L'autre intérêt des classes de trafic vient de la possibilité d'agrégation des flux. La classe d'appartenance est indiquée dans l'en-tête du paquet. Les applications peuvent marquer les paquets en fonction de paramètres locaux (flux multimédia, flux interactif, trafic priorisé...). Le fournisseur d'accès qui récupère le trafic n'a plus à se préoccuper des applicatifs. Il vérifie que le trafic d'une classe ne dépasse pas le contrat préalablement établi.

Dans le cœur du réseau, les routeurs prennent en compte les différentes classes. Le fournisseur d'accès devra également passer des accords avec les autres opérateurs pour pouvoir faire transiter les flux avec un traitement approprié. Cet aspect de dimensionnement de réseau et de négociation d'accords d'échange est au coeur du métier d'opérateur.


Pour signifier l'appartenance d'un paquet à une certaine classe de trafic, une valeur est renseigné au niveau de l'en-tête IP dans l'octet Traffic Class afin qu'elle puisse être analysée par tous les routeurs mettant en oeuvre le traitement différencié. Le format de ce champ est rappelé en Figure 2.

Le tableau 1 présente les différentes valeurs définies pour le champ DSCP (Differential Service Code Point). Les valeurs sont présentées en format binaire avec les 6 bits les plus significatifs de l’octet Traffic Class, puis leur conversion en décimal, leur nommage, la probabilité d’écartement, et l’équivalence avec les anciennes valeurs du champ TOS de l’IPv4 :

Tableau 1 : Format du champ DSCP.

Pour l'instant, deux types de comportement sont standardisés :

  • Assured Forwarding [RFC 2597] : Ce comportement définit quatre classes de trafic et trois priorités, suivant que l'utilisateur respecte son contrat, le dépasse légèrement, ou est largement en dehors. Les classes sont donc choisies par l'utilisateur et restent les mêmes tout au long du trajet dans le réseau. La priorité, par contre, peut être modifiée dans le réseau par les opérateurs en fonction du respect ou non des contrats. Par exemple, pour la classe AF n°2, on dispose des 3 priorités suivantes : AF21, AF22 et AF23. Plus le chiffre est élevé, plus la priorité est faible. C'est-à-dire qu'en cas de saturation de cette classe de trafic, les paquets AF23 seront écartés avant AF22, puis AF21.
  • Expedited Forwarding [RFC 2598] : Ce comportement est comparable à un circuit à débit constant réservé dans le réseau. Le trafic est mis en forme à l'entrée du réseau, en retardant l'émission des paquets qui sont hors contrat. En plus de ces comportements, l'octet DS a gardé, pour des raisons de compatibilité avec les équipements existants, les valeurs du bit ToS qui étaient le plus fréquemment utilisées. La valeur est 0xEF (1011 1111 en binaire, et en tenant compte uniquement des 6 bits de poids forts : 46 en décimal).
TODO: La valeur hexa ci-dessus ne colle pas avec la valeur binaire
TODO: BS: corrigé, mais pas sûr, je demande confirmation à JPR
  • Voice Admit : Cette autre valeur a été par la suite proposée dans le RFC 5865 pour affiner le traitement de flux temps réel de différentes natures : voix, vidéo, signalisation temps réel… (La valeur est 0xBD soit 1011 0111 en binaire, et en tenant compte uniquement des 6 bits de poids forts : 44 en décimal).
TODO: Là non plus, ça colle pas
TODO: BS: corrigé, mais pas sûr, je demande confirmation à JPR
  • Network Control : Autre particularité : la valeur 0xE0 (1110 0000 en binaire, et en tenant compte uniquement des 6 bits de poids forts : 56 en décimal) correspond à CS7, la classe de contrôle du réseau (Network Control). Elle est utilisée dans des mises en oeuvre d'IPv6 pour l'émission de certains paquets ICMPv6. Cette valeur est dépréciée. Il est conseillé d'utiliser la valeur CS6 comme spécifié dans le RFC 4594.

Références bibliographiques

  • RFC 2597 Assured Forwarding PHB Group
  • RFC 2598 An Expedited Forwarding PHB
  • RFC 4594 Configuration Guidelines for DiffServ Service Classes
  • RFC 5865 A Differentiated Services Code Point (DSCP) for Capacity-Admitted Traffic
Personal tools