Difference between revisions of "MOOC:Compagnon Act01-f"

From Livre IPv6

(Système sans classe : CIDR)
(Système sans classe : CIDR)
Line 102: Line 102:
 
=== Système sans classe : CIDR ===
 
=== Système sans classe : CIDR ===
  
En 1993, la solution CIDR (Classless Internet Domain Routing) permet de s’affranchir du système de classes. Au départ, il s’agit d’allouer plusieurs classes C contigües afin d’allouer un nombre d’adresses au plus près de la demande. Ainsi, un réseau qui demande 500 adresses se verra allouer deux classes C contigües, par exemple les blocs 193.56.64.0 et 193.56.65.0. Cela revient à numéroter les hôtes sur 9 bits puisque la valeur binaire du préfixe réseau est : ‘’’11000001.00111000.0100000|0.00000000’’’. Avec CIDR, les premiers bits de l’adresse ne permettent plus d’en déduire la longueur de chacun des champs réseau et hôte. L’information sur la longueur du préfixe réseau a donc été ajoutée à la fin de l’adresse. Ainsi une adresse est notée ''a.b.c.d/x'' où x est un entier qui indique le nombre de bits du préfixe réseau. Dans l'exemple précédent, l’adresse 129.4.0.0 de classe B sera notée 129.4.0.0/16. Dans le deuxième exemple de 2 classes C contigües, on notera l’adresse réseau : 193.56.64.0/23. Avec cette notation, on connaît le nombre x de bits consacrés au préfixe réseau et par soustraction à 32, on peut en déduire le nombre de bits dédiés au numéro d’hôte.
+
En 1993, la solution CIDR (Classless Internet Domain Routing) permet de s’affranchir du système de classes. Au départ, il s’agit d’allouer plusieurs classes C contigües afin d’allouer un nombre d’adresses au plus près de la demande. Ainsi, un réseau qui demande 500 adresses se verra allouer deux classes C contigües, par exemple les blocs 193.56.64.0 et 193.56.65.0. Cela revient à numéroter les hôtes sur 9 bits puisque la valeur binaire du préfixe réseau est : ‘’’11000001.00111000.0100000|0.00000000’’’. Avec CIDR, les premiers bits de l’adresse ne permettent plus d’en déduire la longueur de chacun des champs réseau et hôte. L’information sur la longueur du préfixe réseau a donc été ajoutée à la fin de l’adresse. Ainsi une adresse est notée ''a.b.c.d/x'' où x est un entier qui indique le nombre de bits du préfixe réseau. Dans l'exemple précédent, l’adresse 129.4.0.0 de classe B sera maintenant notée 129.4.0.0/16. Dans le deuxième exemple de 2 classes C contigües, on notera l’adresse réseau : 193.56.64.0/23. Avec cette notation, on connaît le nombre x de bits consacrés au préfixe réseau et par soustraction à 32, on peut en déduire le nombre de bits dédiés au numéro d’hôte.
  
 
== En conclusion ==
 
== En conclusion ==
 
Le réseau Internet se définit comme une interconnexion de réseaux offrant aux machines numériques connectées à ces réseaux, un service de connectivité globale. Internet est organisé hiérarchiquement en interconnectant des milliards de réseaux d'accès à des réseaux régionaux, internationaux jusqu'aux réseaux de backbone. Tous les jours de nouveaux réseaux sont interconnectés à l'Internet sans que cela change les réseaux déjà connectés. L'adresse Internet est au coeur de cette connectivité globale mais dans sa version IPv4, sa capacité limitée et son mode d'attribution en font aussi son point faible.
 
Le réseau Internet se définit comme une interconnexion de réseaux offrant aux machines numériques connectées à ces réseaux, un service de connectivité globale. Internet est organisé hiérarchiquement en interconnectant des milliards de réseaux d'accès à des réseaux régionaux, internationaux jusqu'aux réseaux de backbone. Tous les jours de nouveaux réseaux sont interconnectés à l'Internet sans que cela change les réseaux déjà connectés. L'adresse Internet est au coeur de cette connectivité globale mais dans sa version IPv4, sa capacité limitée et son mode d'attribution en font aussi son point faible.

Revision as of 15:12, 24 February 2022

Activité 01 : Qu'est ce que le réseau Internet ?

Internet et l'interconnexion de réseaux

Qu’est-ce que l'Internet ? Littéralement, Internet est la contraction d' "Inter-networking" qui signifie "interconnexion de réseaux". À ce stade, nous ne voyons pas la différence avec l'Internet qui répond aussi à cette définition. Mais Internet est bien plus qu’un simple réseau car c’est une interconnexion de réseaux à l’échelle mondiale. L'Internet est aussi appelé le réseau des réseaux. Sa couverture mondiale permet à des personnes partout dans le monde de communiquer grâce à de nombreuses applications.

Un réseau de communication

Qu'est-ce qu’un réseau ? Un réseau est un système de transmission capable de transférer des données d'un point à un autre de ce réseau. Un réseau de communication fournit une infrastructure pour l’échange d’informations entre n’importe quelles machines numériques qui y sont connectées. L’infrastructure du réseau comprend

L’infrastructure du réseau comprend --des liens de communication, qu’ils soient filaires ou sans fil, --des équipements comme les stations de base, les points d’accès WiFI, les commutateurs, ou les routeurs, --des programmes ou des logiciels qui réalisent les protocoles de l’Internet et les applications. Les machines numériques encore appelées "hôtes" sont par exemple un ordinateur, un serveur, un robot, un guichet automatique bancaire, une montre connectée, ou un smartphone. Les hôtes exécutent les applications de communication qui sont les sources et les destinations du trafic.

Les applications pour utiliser l’Internet

Les applications sont des programmes informatiques exécutés sur plusieurs machines et qui collaborent pour permettre à des personnes de communiquer directement entre elles ou d’échanger des données à travers le réseau. Certaines applications sont qualifiées d’historiques comme le mail ou le transfert de fichiers car elles ont été développées au tout début d’Internet. Leur particularité est de transférer des données ou des fichiers. De nos jours, les internautes utilisent massivement le Web, les réseaux sociaux, la télévision ou les jeux en réseau. Ces applications récentes permettent l’échange de contenus plus riches tels que l’audio ou la vidéo. Citons par exemple, les applications suivantes : Web, VoIP, e-mail, jeux, e-commerce, calcul réparti, transfert de fichiers, vidéo à la demande, réseaux sociaux.

Accéder à l’Internet

Pour communiquer, l’utilisateur dispose d’un terminal de communication, généralement un PC, une tablette ou un smartphone. L’application de communication s’exécute sur ces terminaux et envoie et/ou reçoit des informations de différentes natures (textes, images, audio, video). Ces terminaux utilisateurs sont connectés à des réseaux d’accès à Internet. Le réseau d’accès est le premier maillon pour accéder à Internet et le principal chose ressentie par l’utilisateur. On distingue plusieurs types de réseau d’accès. Le réseau d’accès résidentiel permet aux utilisateurs d’accèder à Internet depuis leur domicile. Le particulier est abonné à un opérateur Internet ou fournisseur d’accès à Internet (FAI) via une offre d’abonnement Internet qui a un coût mensuel forfaitaire. Le réseau résidentiel est le plus souvent constitué autour d’une « box », qui est un routeur paramétré par l’opérateur. Cette box permet une interconnexion des machines de la maison en sans fil, grâce au Wi-Fi ou en filaire, grâce à Ethernet. Elle est relié au réseau de l’opérateur par la ligne téléphonique de l’abonné, en ADSL (Asymetric Digital Subscriber Line) ou en fibre optique.

Avec la généralisation des « smartphones », légers et puissants, le réseau mobile ou cellulaire est largement utilisé pour accéder à l’Internet notamment aux réseaux sociaux. Le réseau mobile est déployé par un opérateur pour couvrir des territoires avec des communications sans fil. Sur un territoire sont disséminées des stations de base munies d’antennes qui couvre une cellule géographique. Les utilisateurs peuvent ainsi se connecter par des liaisons radio partagées. Les stations de base forment un réseau d’accès connecté par fibre optique au réseau filaire de l’opérateur. Le réseau mobile permet aux utilisateurs de téléphoner partout et même en mobilité. Depuis leur déploiement à la fin des années 90, les réseaux mobiles ont connu des innovations technologiques majeures qui ont amélioré leur couverture et augmenté le débit d’accès. Ainsi avec la quatrième génération, on peut désormais transférer des données avec des débits de plusieurs Mbit/s et regarder des vidéos en streaming. Le troisième type de réseau d’accès est celui de l’entreprise. Ce réseau utilise le plus souvent la technologie Ethernet mais aussi le Wi-Fi. Ethernet est basé sur une infrastructure constituée du câblage en paires torsadées et de prises Ethernet (RJ45) et d’équipements dédiés. Le câblage est déployé dans tous les bureaux ou salles de l’entreprise et relie ainsi les hôtes aux équipements réseau : commutateurs Ethernet et routeurs.

Structure de l’Internet

L’Internet est une interconnexion de réseaux différents appartenant à différentes organisations. Une communication entre deux utilisateurs, de réseaux différents voire de pays différents passent par plusieurs réseaux. Comme le montre la figure 1, la communication entre Alice et Bob passe par plus d’un réseau : elle part du réseau résidentiel d’Alice, puis passe par le réseau X de son FAI. Le réseau X est lui-même connecté à un réseau régional, plus important. Pour simplifier, le réseau régional est connecté au réseau Backbone. Il interconnecte un autre réseau régional auquel est connecté le réseau d’opérateur Y auquel est abonné l’utilisateur B. Les réseaux de l’opérateur de Bob ou du FAI d’Alice sont des réseaux de collecte : ils donnent accès à Internet à une multitude d’abonnés. Ils couvrent une région ou un seul pays.

Le backbone ou épine dorsale d’Internet est constitué d’un ensemble de réseaux qui couvre plusieurs continents, fédérant ainsi tous les réseaux régionaux. Ils disposent d’une très grande capacité d’acheminement du trafic. Leurs clients sont d’autres réseaux de FAI et jamais des particuliers. Internet est donc composé d'un ensemble de réseaux différents, interconnectés de manière hiérarchique, mis en place et maintenu par des opérateurs privés. Leur interconnexion assure une connectivité globale entre les usagers et les services.

La communication à travers des réseaux différents est possible grâce à la technologie de l'Internet. Internet semble être un réseau logique ou virtuel qui est en réalité une suite de réseaux physiques reliés les uns aux autres.


Figure 1 : Interconnexion de réseaux dans l’Internet.

L’adressage IPv4 dans Internet

Nous avons vu qu’Internet était une interconnexion de nombreux réseaux, publics, privés, FAI régionaux ou internationaux. A la manière d’une adresse postale ou d’un numéro de téléphone, chacun de ces réseaux est identifié de manière unique par une adresse réseau ou adresse IP. L’adresse IP est un élément essentiel car elle identifie de manière unique un réseau sur l’Internet. C’est une information indispensable pour effectuer le routage d’un paquet entre la source et son destinataire. Chaque réseau interconnecte de nombreux hôtes et routeurs qu’il faut pouvoir identifier de manière unique. L’adresse IP est hiérarchique à deux niveaux. Une partie de l’adresse, appelé préfixe réseau, identifie un réseau particulier sur l’Internet. La deuxième partie de l’adresse, appelée champ hôte, identifie de manière unique un hôte ou une interface de routeur sur ce réseau particulier. Grâce à cette adresse, on peut localiser sur quel réseau la machine est connectée, ce qui est indispensable pour le routage. Les adresses IP sont distribuées par un organisme appelé Registry, différent pour chaque grande région du monde.

Structure hiérarchique de l’adresse IPv4

L’adresse est définie sur 32 bits ou 4 octets, selon un format hiérarchique en 2 champs (voir Fig.2). Le préfixe ‘’réseau’’ porte sur les bits de poids fort (à gauche des 32 bits). On l’appelle encore ‘’préfixe réseau’’ et ‘’NetID’’ (Network Identifier) en anglais. Le champ ‘’Hôte’’ porte sur les bits de poids faible (à droite des 32 bits). On l’appelle encore ‘’numéro d’hôte’’ ou ‘’HostID’’ (Host Identifier) en anglais.

Figure 2 : Format de l’adresse IP.

Système de classes d’adresse dans IPv4

Ces deux champs ont une longueur variable selon la taille du réseau. Initialement, tel que défini dans le RFC xx, le découpage de ces 2 champs dépendait d’un système de classes, notées de A à E (voir Fig.3). Pour différencier à quelle classe appartient une adresse réseau, il faut examiner les 3 premiers bits de poids fort. Ainsi, le premier bit de poids fort identifie la classe A. La valeur binaire ‘’10’’ identifie la classe B et la valeur binaire ‘’110’’ identifie la classe C. La classe D est identifiée par la valeur ‘’1110’’ et la classe E par ‘’1111’’. La classe A est associée aux très grands réseaux car 8 bits sont dédiés au préfixe réseau et 24 bits pour la partie hôte, offrant une capacité de 2^24 adresses possibles d’hôte, soit plus de 16 millions d’adresses. La classe B est associée aux grands réseaux car avec un préfixe et un champ hôte sur 16 bits, elle permet d’adresser jusqu’à 65536 hôtes. La classe C est dédiée aux petits réseaux connectant moins de 256 hôtes, avec un préfixe réseau sur 24 bits et un champ hôte sur 8 bits. La classe D est réservée pour l’adressage multicast et la classe E est non utilisée jusqu’à présent.

Figure 3 : Système de classes d’adresses (RFC ).

Notation décimal pointé d’une adresse IPv4

L’adresse IP est un nombre qui identifie un hôte particulier sur un réseau particulier. C’est un nombre binaire qui est utilisé notamment pour les routeurs qui décide du routage en comparant deux préfixes réseau par des opérations booléennes : 2 machines sont sur le même sous-réseau si la somme binaire de leur préfixe respectif est égal à zéro. On utilise la notation ‘’décimale pointée’’ pour faciliter leur manipulation par des humains. Cela consiste à représenter en décimale la valeur de chaque octet de l’adresse, chaque octet étant délimité par un point. Ainsi la figure 4 montre une adresse binaire et sa notation décimale en dessous. Cette adresse commençant par ‘’10’’, il s’agit d’une adresse de classe B qui définit le préfixe réseau sur 16 bits et le numéro d’hôte sur 16 bits aussi.

Figure 4 : Notation de l’adresse réseau en décimal.

Par convention, on note l’adresse réseau avec une valeur à zéro dans tous les bits du numéro. Sur l’exemple de la figure 4, l’adresse réseau est donc : 129.4.0.0.

Système sans classe : CIDR

En 1993, la solution CIDR (Classless Internet Domain Routing) permet de s’affranchir du système de classes. Au départ, il s’agit d’allouer plusieurs classes C contigües afin d’allouer un nombre d’adresses au plus près de la demande. Ainsi, un réseau qui demande 500 adresses se verra allouer deux classes C contigües, par exemple les blocs 193.56.64.0 et 193.56.65.0. Cela revient à numéroter les hôtes sur 9 bits puisque la valeur binaire du préfixe réseau est : ‘’’11000001.00111000.0100000|0.00000000’’’. Avec CIDR, les premiers bits de l’adresse ne permettent plus d’en déduire la longueur de chacun des champs réseau et hôte. L’information sur la longueur du préfixe réseau a donc été ajoutée à la fin de l’adresse. Ainsi une adresse est notée a.b.c.d/x où x est un entier qui indique le nombre de bits du préfixe réseau. Dans l'exemple précédent, l’adresse 129.4.0.0 de classe B sera maintenant notée 129.4.0.0/16. Dans le deuxième exemple de 2 classes C contigües, on notera l’adresse réseau : 193.56.64.0/23. Avec cette notation, on connaît le nombre x de bits consacrés au préfixe réseau et par soustraction à 32, on peut en déduire le nombre de bits dédiés au numéro d’hôte.

En conclusion

Le réseau Internet se définit comme une interconnexion de réseaux offrant aux machines numériques connectées à ces réseaux, un service de connectivité globale. Internet est organisé hiérarchiquement en interconnectant des milliards de réseaux d'accès à des réseaux régionaux, internationaux jusqu'aux réseaux de backbone. Tous les jours de nouveaux réseaux sont interconnectés à l'Internet sans que cela change les réseaux déjà connectés. L'adresse Internet est au coeur de cette connectivité globale mais dans sa version IPv4, sa capacité limitée et son mode d'attribution en font aussi son point faible.

Personal tools